ミニチュア太陽フレアを大型レーザーで実験室に生成

~宇宙の爆発現象のカギを握る磁気リコネクションの駆動機構解明に新たな光~

ポイント

・太陽フレア*1や地球磁気圏で普遍的に観測されるプラズマの爆発現象は、磁力線再結合(磁気リコネクション)によるものと考えられるが、未だそのメカニズムは未解決である。
・従来は人工衛星による観測が唯一の実証研究の手段であったが、大型の高出力レーザー*2を用いた「レーザー宇宙物理学実験」で実験室に高エネルギープラズマを生成し、太陽フレアと同様に強力な磁場が繋ぎ替わる様子と、磁場によるプラズマの加熱・加速を検出した。
・今後、本手法を用いることで、磁気リコネクションのプラズマ挙動やエネルギー変換過程の解明につながる可能性がある。

概要

 磁力線再結合(磁気リコネクション)は、太陽フレアや地球磁気圏、核融合プラズマ等、様々なプラズマ中で普遍的に観測され、磁場からプラズマへのエネルギー変換、宇宙線(高エネルギー荷電粒子)の加速や、核融合プラズマの閉じ込め悪化を引き起こします。しかしその現象を完全に説明できる理論はまだ無く、磁力線が繋ぎ替わるメカニズムやどのようにエネルギー変換が決まるのかなど多くの点が未解明です。
 九州大学大学院総合理工学研究院の森田太智助教、松清修一准教授、諌山翔伍助教、青山学院大学・山崎了教授、田中周太助教、富山大学・竹崎太智助教、北海道大学・富田健太郎准教授、大阪大学・坂和洋一准教授、蔵満康浩教授らは、世界有数の大型レーザーである大阪大学レーザー科学研究所の激光XII号を用いて、高エネルギープラズマ中で、太陽フレアと同様、磁力線が繋ぎ替わるとともにプラズマが加熱・加速される様子と、局所的なプラズマ挙動を計測することに成功しました。
 磁気リコネクションは、人工衛星による”その場”観測や太陽観測、数値シミュレーション等で研究が進められてきました。今回、本研究グループは、レーザープラズマ*3を用いた「レーザー宇宙物理学実験」で、人工衛星観測では不可能なプラズマの大域構造と、磁場が繋ぎ替わる場所でのプラズマの計測を同時に行うことに成功しました。プラズマ中に計測用レーザーを入射して散乱光スペクトルを測定することで、磁場が繋ぎ替わる微小空間のプラズマ挙動を詳細に調べました。その結果、逆向きの磁場を維持する電流の発生と、磁場の繋ぎ替わりを示す電流消失、磁気リコネクションによるプラズマの加熱・加速が明らかになりました。
 今後、本実験手法を用いることで、50年以上未解決な磁気リコネクションの駆動メカニズムやエネルギー変換過程の解決に大いに貢献できると期待されます。
本成果は2022年11月10日(木)に米国科学誌Physical Review Eに掲載されました。

用語解説

(※1) 太陽フレア
太陽大気の黒点群の中で発生する爆発現象。太陽大気に蓄積された磁気エネルギーがプラズマの運動エネルギーや熱エネルギー、高エネルギー粒子、電磁波などに変換される。このエネルギー変換を担うのが磁気リコネクションと考えられている。
(※2) 高出力レーザー
短時間に高エネルギーのレーザー光を出力するため、パルスあたりのピーク強度が非常に大きい。今回使用した激光XII号レーザーでは、出力エネルギー700ジュールを1.3 ナノ(10-9)秒という短時間に出力します。
(※3) レーザープラズマ
高出力レーザーを固体に集光照射したとき、レーザー光が固体に吸収され、固体が加熱されることで爆発的に放出されるプラズマ。
(※4) 自己生成磁場
プラズマの温度と密度が空間的に大きく変化する場合、それらの勾配の向きが異なると、大きな磁場が成長します。レーザーを微小空間に集光して生成するレーザープラズマではこの磁場が大きく成長し、レーザー集光点を周回する向きの磁場になります。
(※5) 分光計測、分光器
光を波長ごとに分光して計測する装置が分光器であり、分光したスペクトルを計測することを分光計測と呼ぶ。本研究では、およそ20 ピコ(10-12)メートルという非常に高い分解能を持つ分光器を作成して、プラズマによる散乱光の微小な波長変化を計測しました。
(※6) 電流シート
プラズマ中で生成される非常に薄い電流層。逆向きの磁力線が押し付けられると、その逆向き磁場を維持するために非常に強く薄い電流層ができます。この電流が流れ続けていると磁力線は繋ぎ替わりませんが、何らかの理由で電流が散逸すると磁力線が繋ぎ替わり、繋ぎ替わった後の磁場の張力によってプラズマが激しく加速・加熱されます。

詳細

詳細は九州大学プレスリリースをご参照ください。

世界最高レベルの活性を持つ燃料電池用メタルフリー正極触媒の開発に成功

第91回サイエンスカフェ@ふくおか「アート×農の魅力に迫る!」

関連記事

  1. ベイズ推定を用いた新たな電子構造の解析法を開発

    〜 トポロジカル絶縁体などを巡る数々の論争の決着へ 〜ポイント・…

  2. 安達千波矢主幹教授「2022年(第92回)服部報…

    〜安達千波矢主幹教授「2022年(第92回)服部報公会報公賞」受賞!〜…

  3. 令和3年度第6回I²CNER Webinar

    令和3年度第6回I²CNER Webinarカーボンニュートラル・エ…

  4. 九大卒業生による「九創会」の設立

    九大卒業生による「九創会」の設立九大卒の創業者CEOの方々をメンバ…

  5. 【学内向け】『未来共創リーダー育成プログラム』プ…

    【学内向け】『未来共創リーダー育成プログラム』プログラム体験会について…

  6. 超高速スピン変換により有機発光分子の励起一重項・…

    〜有機ELデバイスの高輝度・高効率化に成功〜 九州大学稲盛フロンティ…

  7. 第18回有機光エレクトロニクス産業化研究会

    「クロスリアリティ(XR)関連技術の最前線 ~ 有機EL技術活用の可能性を…

  8. 遊泳微生物における新たなキラル集団運動現象を発見…

    遊泳微生物における新たなキラル集団運動現象を発見 水中を泳ぐ微生物や…