Beyond 5G, accelerating the world of ultra-high-speed optical data transmission

Professor Shiyoshi Yokoyama
Institute for Materials Chemistry and Engineering

Researchers develop a new ultrahigh-speed optical modulator that can operate at more than 10 times the speed of current devices

Fukuoka, Japan—Kyushu University researchers have successfully developed an ultrahigh-speed optical modulator that can operate at more than 10 times the speed of current devices. This modulator was made thanks to a new method the team developed that allowed them to grow thin films of ferroelectric crystals on silicon substrates.

Optical communication technology is the bedrock of our modern internet. Thousands of kilometers of fiberoptic cable are laid across the globe, providing the data needed for our modern digital age. Transferring that data is done using light, hence the need for fiberoptic material that can contain said light between major distances.

“Optical fiber traffic is rapidly increasing year by year, and the need for devices and systems capable of faster transmission is growing. Devices called optical modulators are critical for this future,” explains Professor Shiyoshi Yokoyama of Kyushu University’s Institute for Materials Chemistry and Engineering and who led the study published in communications materials. “Optical modulators are devices that help generate high-speed signals from optical fibers. They can convert or change things like the intensity, phase, or frequency of the light using electrical signals.”

One of the biggest hurdles in making ultrahigh-speed optical data transmission is in finding the right materials capable of providing such speeds. Today, optical modulators are being built from semiconductors, inorganic crystals, and even polymers. Yokoyama and his team focused on a type of material called ferroelectric crystals, a material that exhibit spontaneous electrical polarization.

“These materials have high electro-optic effects and are prime candidates to be optical modulators. However, it has been difficult to form them into the thin films necessary for use in optical devices,” continues Yokoyama. “Thankfully, our team was able to develop a method that to grown ferroelectric crystals on thin films of silicon.”

The material, that the team is call PLZT, was developed into an optical modulator that was 2.5 mm in length. Following tests, they found that their new ferroelectric modulator exhibited modulation of up to 170 Gbps—an operating 10 times higher than existing devices—and a transmission rate of more than 300 Gbps using a four-level pulse modulation.

The team hopes their research can be utilized in future optical network transmissions technologies, as well as support future 6G technologies and optical quantum computers.

“The demand for higher data speeds in optical fiber communications will continue to grow, and data centers will require higher density signal transmissions and processing. I expect our new optical modulator will contribute to this continually expanding industry,” concludes Yokoyama.

Research-related inquiries


Shiyoshi Yokoyama, Professor

Department of Advanced Device Materials, Institute for Materials Chemistry and Engineering
Contact information can also be found in the full release

《1/27-1/31》Kyushu University Energy Week 2025

《1/15》Q-AOS Brown Bag Seminar #172: Plant phenology and BVOC

Related post

  1. 【7/10】Q-AOS Brown Bag Se…

    Ken ALBRECHT, Associate Professor (In…

  2. 【11/26】 FY2024 6th I²CNE…

    The 6th I²CNER Seminar will be held : …

  3. Q-AOS Brown Bag Seminar …

    Department of Advanced Information Te…

  4. Poster Session at FS…

    Call for participation: Poster Sessio…

  5. FY2022 the 1st I²CNER We…

    FY2022 the 1st I²CNER WebinarInter…

  6. ”China’s Spatial I…

    Department of Social Studies, Faculty …

  7. FY2022 the11th I²CNER We…

    FY2022 the 11th I²CNER WebinarInte…

  8. 【7/31ー8/27】Workshop on t…

    A workshop with practical training on …