~ ⾼感度MRI 癌診断の実現に向け⼤きく前進 ~
ポイント
・光励起三重項電⼦スピンを⽤いた動的核偏極法によるNMR, MRI の⾼感度化のためには、観測対象をガラス材料中にドープすることが望ましい。
・偏極源の電⼦構造に着⽬した分⼦設計により光励起三重項の偏極状態を制御し、分⼦配向がランダムになるガラス材料中で過去最⾼値となる約14,000 倍(従来に⽐べて5 倍)の NMR の⾼感度化を達成した。
・⾼感度な MRI 癌診断への応⽤に繋がることが期待される。
概要
核磁気共鳴分光法 (NMR)*1 や磁気共鳴イメージング (MRI)*2 は⾮破壊・⾮侵襲な分光法であり、現代の化学や医療分野では⽋かすことのできない技術です。⼀⽅で、NMR や MRI は感度が低く、特にMRI ではその観測対象が体内に多量に存在する⽔分⼦に限られ、応⽤範囲の拡⼤を妨げています。そのため、NMR や MRI を⾼感度化する⼿法として、⾊素分⼦の光励起三重項電⼦スピンを⽤いた動的核偏極法 (triplet-DNP)*3 が注⽬されています。
今回、九州⼤学⼤学院⼯学研究院の坂本啓太⼤学院⽣、濱地智之⼤学院⽣、楊井伸浩准教授、京都⼤学理学研究科の御代川克輝⼤学院⽣、倉重佑輝准教授、理化学研究所開拓研究本部及び仁科加速器科学研究センターの⽴⽯健⼀郎研究員、上坂友洋主任研究員の研究グループは、応⽤上重要なガラス材料中での triplet-DNP において過去最⾼値となる約14,000 倍の NMR の感度向上を達成しました。
これまで NMR の感度を実⽤レベルまで向上させるには単結晶を⽤いて偏極源となる⾊素分⼦の配向を揃える必要がありました。しかし、単結晶材料には観測対象のプローブ分⼦をドープできないためNMR や MRI への応⽤は困難でした。本研究では有機⾊素分⼦の電⼦構造に着⽬した分⼦開発により、ガラス材料中においてランダム配向であっても実⽤レベルの NMR 増感が得られることを初めて実証しました。また量⼦化学計算による理論解析を⾏うことで、理想的な⾊素分⼦の設計指針を構築することにも成功しました。
今回の成果により、これまで実⽤化に向け⼤きな障壁となっていたプローブ分⼦への偏極移⾏を⾼効率で⾏うことができるようになるため、MRI 癌診断などへの応⽤に繋がると期待されます。
本研究成果は、2023 年10 ⽉23 ⽇(現地時間)に⽶国科学アカデミー紀要の国際学術誌「Proceedings of the National Academy of Sciences of the United States of America」にオンライン掲載されました。
用語解説
(※1) 核磁気共鳴分光法 (NMR)
核スピンは磁場中でゼーマン効果により磁場に対して同じ⽅向と逆向きの⽅向に分かれ、異なる2 つのエネルギー状態(α、β)をとります。2 つのエネルギー状態間に共鳴するラジオ波を照射することで NMR 信号が得られます。このエネルギー差は分⼦の置かれている周辺環境によって異なることから、NMR によって分⼦の構造やダイナミクスを解析することができます。
(※2) 磁気共鳴イメージング (MRI)
MRI は NMR の原理を⽤いて⽣体内部の画像化を⾏う⽅法で、医療診断に使⽤される⾮侵襲的なイメージング技術の⼀つです。
(※3) 光励起三重項電⼦を利⽤した triplet-DNP
Triplet-DNP のスキーム。偏極源の光励起によって⽣成する励起三重項電⼦の偏極を核スピンに移すことで、 超核偏極状態を⽣成する。
詳細
詳細はプレスリリースをご参照ください。